If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=199
We move all terms to the left:
x^2+x-(199)=0
a = 1; b = 1; c = -199;
Δ = b2-4ac
Δ = 12-4·1·(-199)
Δ = 797
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{797}}{2*1}=\frac{-1-\sqrt{797}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{797}}{2*1}=\frac{-1+\sqrt{797}}{2} $
| 3(2+6x)=-(3x-6) | | -8(v-3)=8v-8 | | 2/5(x-5/4)=-27/10 | | (3x)/7.5=4/(2.5)x | | 6x+28=-2(x-2) | | 0.5x+3=4.5* | | 4x+4x+81=180 | | -5-2r=-(3r+4) | | 4(-2-2b)=3(-3b-3) | | -2(v-8)=-8v-44 | | u/7+12.1=-5.4 | | m/8-1/2=19 | | 1+6a=7a-9 | | 3(3x+1)=5x-13 | | 5r+8=180 | | -4w+2(w+3)=18 | | G=-2+-3x-1 | | 4x+81+81=180 | | 250/x=1/30 | | 4=3(x-10)/7 | | 16/12=a/1.26 | | 5=w=3 | | v+5/6=72/3 | | 200+20x=250+15 | | -3p+4=4+2p+p | | 3b+4.4=13.4 | | m/23=23 | | 32=5b+4b-1-12 | | 3x5=38 | | 3w+5/6=10+6w/12 | | x+9/3=89 | | 5x+8(x-4)=11x-30 |